
40

PHYSICAL REVIEW E SEPTEMBER 2000VOLUME 62, NUMBER 3
Six-vertex model with domain wall boundary conditions and one-matrix model

P. Zinn-Justin*
C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-38

~Received 30 May 2000!

The partition function of the six-vertex model on a square lattice with domain wall boundary conditions
~DWBC! is rewritten as a Hermitian one-matrix model or a discretized version of it~similar to sums over
Young diagrams!, depending on the phase. The expression is exact for finite lattice size, which is equal to the
size of the corresponding matrix. In the thermodynamic limit, the matrix integral is computed using traditional
matrix model techniques, thus providing a complete treatment of the bulk free energy of the six-vertex model
with DWBC in the different phases. In particular, in the antiferroelectric phase, the bulk free energy and a
subdominant correction are given exactly in terms of elliptic theta functions.

PACS number~s!: 05.50.1q
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I. INTRODUCTION

In @1#, Korepin and the author brought up the issue of
sensitivity of the six-vertex model to its boundary conditio
~even in the thermodynamic limit!. The motivation came
mostly from some recent work on domino tilings@2,3,4#, in
which boundary conditions seemed to affect greatly the ty
cal arrangement of dominos. The problem of count
domino tilings is equivalent to the six-vertex model wi
particular Boltzmann weights; this is schematically describ
on Fig. 1. Therefore it seems natural to investigate the c
responding problem for the general six-vertex model w
arbitrary weights.

The usual studies of the six-vertex model~see @5# and
references therein! are made by assuming periodic bounda
conditions~PBC!. In @1#, different boundary conditions, th
so-called domain wall boundary conditions~DWBC!, were
used@Fig. 2~a!#, and the thermodynamic limit of the mode
was investigated using determinant formulas for the partit
function @6,7#. The main result found was an expression
the bulk free energy in the disordered phase of the mo
which is different from the usual expression for the case
periodic boundary conditions. It should be noted that
DWBC correspond to the Aztec shape in the domino tili
language~see Fig. 2!, which is precisely the type of tiling
which was considered in@2,3#.

Here, we use a new method to compute the bulk f
energy with DWBC in all phases of the model; in particula
we obtain an independent confirmation of the results of@1#.
In Sec. II, starting from the determinant formula for the p
tition function, we shall rewrite the latter as a matrix integr
but with a measure on the space of hermitean matrices w
is not necessarily smooth. In the disordered phase~Sec. IV!,
the measure will turn out to be smooth, whereas in the fe
electric and antiferroelectric phase~Secs. III and V! it will be
discrete~when expressed in terms of the eigenvalues!. The
sizeN of the matrices is the size of the original square latti
and therefore the thermodynamic limit can be investiga
using tools from largeN matrix models. Since the results o
Sec. V~concerning the antiferroelectric phase! are new, they
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are analyzed in more detail by considering various limits
the parameters, and the subleading correction of the free
ergy is calculated.

II. PROPERTIES OF THE DETERMINANT FORMULA

We use the same notations as in@1#. We consider the
homogeneous six-vertex model, with the following para
etrization of the Boltzmann weights attached to the vertic

a5sinh~ t2g!, b5sinh~ t1g!, c5sinh~2g!.
~2.1!

The domain wall boundary conditions~DWBC! mean that
external horizontal arrows are outgoing, whereas exte
vertical arrows are incoming@Fig. 2~a!#. These boundary
conditions only exist for square lattices. In@6,7#, it was
shown that the partition function of the six-vertex mod
with DWBC on aN3N lattice could be written as

ZN5
@sinh~ t1g!sinh~ t2g!#N2

~)n50
N21n! !2 tN , ~2.2!

wheretN is a Hänkel determinant:

tN5 det
1< i ,k<N

F di 1k22

dti 1k22 f~ t !G . ~2.3!

FIG. 1. Correspondence between vertices of the six-ve
model and small patches of a domino tiling.
3411 ©2000 The American Physical Society
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3412 PRE 62P. ZINN-JUSTIN
Here,

f~ t ![
sinh~2g!

sinh~ t1g!sinh~ t2g!
. ~2.4!

It is known that such determinants are tau functions of
Toda semi-infinite chain hierarchy in terms of appropria
parameters. Here, as a function oft, thetN satisfy the usual
Toda equations under the bilinear form@8,1#:

tNtN9 2tN8
25tN11tN21 , ;N>1. ~2.5!

This equation was used in@1# to derive the bulk free energ
of the model in the ferroelectric and disordered phase
making an appropriate Ansatz on the largeN form of tN .
Unfortunately, the Ansatz in the antiferroelectric phase is
that simple, as we shall see, and would be hard to justif
this point.

We shall therefore use another approach here, base
the equivalence of Ha¨nkel determinants with one-matri
models@9,10#. Let us write formallyf(t) as a Laplace trans
form:

f~ t !5E dm~l!etl, ~2.6!

wheredm(l) is a measure. We then notice that the deriv
tives of f(t) are the moments:

di

dti
f~ t !5E dm~l!l ietl. ~2.7!

Inserting this into Eq.~2.3! leads to

tN5E dm~l1!¯dm~lN! (
sPSN

~21!s)
i 51

N

@etl il i
i 1s~ i !22#.

~2.8!

We see that appears naturally the Van der Monde dete
nantD(l i)5det(li

j21)5)i,j(li2lj). After a few elementary
manipulations we find:

tN5
1

N! E dm~l1!¯dm~lN!D~l i !
2et( il i. ~2.9!

If dm(l) is a smooth positive measure of the formdm(l)
5dle2V(l), then we recognize in Eq.~2.9! the expression in
terms of its eigenvalues of the matrix integral:

FIG. 2. ~a! A configuration of the six-vertex model with DWBC
and ~b! one possible corresponding tiling of the Aztec diamond
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tN;E dMetr@ tM1V~M !#, ~2.10!

where M is a HermitianN3N matrix, anddM is the flat
measure.

As we shall see, if the measure is not smooth, we s
end up with expressions which can still be treated using
propriately adapted matrix model techniques. This is ty
cally the case of discrete measures that appear in sums
Young diagrams@11–18#.

Expressions of the type~2.9! have been widely studied in
the literature~on random matrices in particular!. One impor-
tant goal is to find their largeN asymptotic behavior. Here
we shall mention the simplest method to find their lead
largeN behavior: the saddle point method. The basic idea
that logD(li)

2, being a sum of;N2 terms, scales asN2 in
the large limit, whereas there are onlyN variables of integra-
tion. Therefore the integral is dominated by a saddle po
An important remark is that, in order to find the saddle poi
we must write our action~i.e., log of the function integrated!
in such a way that all terms are of the same orderN2. Here,
the termt( il i is naively of orderN, and we reach the im-
portant conclusion that thel i will scale as

l i}Nm i . ~2.11!

After the change of variablesl i→m i , one can use the saddl
point approximation, which gives us access to the functiof
defined by

f 5 lim
N→`

log~tN /cN!

N2 , ~2.12!

wherecN[()n50
N2

n!) 2. f is essentially the bulk free energy
cf. Eq. ~2.2!. Note that the saddle point is a very crude a
proximation in the sense that it does not naturally allow fo
systematic computation of subleading corrections; howe
it will be sufficient for our purposes. We now proceed with
separate discussion of the different phases of the model

III. FERROELECTRIC PHASE

This is the phase in which the weights are given by E
~2.1! with t andg real, ugu,t. We use the following decom
position:

f~ t !5
sinh~2g!

sinh~ t1g!sinh~ t2g!
54(

l 50

`

e22t l sinh~2g l !.

~3.1!

We are in the situation where the measuredm is discrete. The
determinant takes the form

tN52N2

(
l 1 ,...,l N50

`

D~ l i !
2e22t( i l i)

i
sinh~2g l i ! ~3.2!

~we have neglected here, as in all subsequent calculati
constant factors which manifestly do not contribute to t
bulk free energy!. This expression is very close to what on
encounters when studying the Plancherel measure~or other
similar measures! on Young diagrams@11#. In the context of
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Young diagrams, thel i represent the shifted highest weigh
l i5mi1N2 i , where themi are the usual highest weigh
~sizes of the rows of the diagram!, and one is usually inter
ested in the limiting shape of the Young diagram when
size is sent to infinity. There has been a lot of work on t
type of expressions, both in the mathematical literat
@11,15–17# ~the recent work being concerned withfluctua-
tions around the limiting shape, which we shall not discu
here! and the physical literature@12–14,18#. One relevant
observation from@12# is the following: after the rescaling
m5 l /N, all sums look like Rieman sums and one is temp
to replace them with integrals, and then apply the sad
point method. This is correcton conditionthat one imposes
an additional constraint coming from the discreteness of
l i . In Eq. ~3.2!, all l i must be distinct integers~due to the
Van der Monde determinant!, and therefore

u l i2 l j u>1, ; iÞ j . ~3.3!

If we introduce the densityr(m)dm of the m i5 l i /N, nor-
malized so that*r(m)dm51, then Eq.~3.3! implies that it
must satisfy the inequality

r~m!<1. ~3.4!

In general, when thel i are trapped in a well of the potentia
~as is the case here!, there will be a saturated region at th
bottom of the well wherer(m)51, and an unsaturated re
gion wherer(m),1.

Let us now proceed with the solution. Once the rescal
m i5 l i /N is performed, one notices that up to correctio
exponentionally small in N, sinh(2gNmi)'1/2e2uguNm i.
Therefore

tN'cN8 2N2

(
m1 ,...,mNP~1/N!Z1

D~m i !
2e22N~ t2ugu!( im i,

~3.5!

wherecN8 [NN2
. Of course, once this simplification is mad

we regognize a well-known expression; in fact, going ba
now to the original variablesl i one can computetN directly
using the Cauchy identity for Schur functions. However,
emphasize the similarity with the other phases~which do not
possess such a simple group-theoretic interpretation!, we
shall use the saddle point method, following the solution
@18#. SincetN only depends ont2ugu, we temporarily set
g50.

The support of the saddle point densityr~m! is expected
to be of the form@0, b#; the saturated region is@0, a#,
whereas the unsaturated region is@a, b#. We define the re-
solvent

v~z!5E
0

b dmr~m!

z2m
~3.6!

for all complexz¹@0,b#. The saddle point equations can b
written in terms ofv:

v~m1 i0!1v~m2 i0!52t, ;mP@a,b#. ~3.7!
s
s
e

s

d
le

e

g
s

k

f

In order to solve the equation, we first remove the logari
mic cut of v with the redefinition:ṽ(z)5v(z)2 log@m/(m
2a)#ṽ(z) is analytic everywhere except on@a, b# and satis-
fies

ṽ~m1 i0!1ṽ~m2 i0!52t22 log
m

m2a
. ~3.8!

This completely determines it to be

ṽ~z!5t2A~z2a!~z2b!

3E
a2 i0

b2 i0 dz8

2ip~z2z8!A~z82a!~z82b!
log

z8

z82a
.

~3.9!

After some calculations, we find that

v~z!5t22 logFAb~z2a!1Aa~z2b!

Az~b2a!
G . ~3.10!

The end pointsa and b are determined by imposingv(z)
;1/z asz→`. This gives rise to two equations:

t5 log
Ab1Aa

Ab2Aa
,

Aab51, ~3.11!

whose solution is

a5coth
t

2
, b5tanh

t

2
. ~3.12!

In order to conclude, one expands further the functionv(z):

v~z!5
1

z
1

a1b

4

1

z2 1¯ ~3.13!

and uses the fact that

] f

]t
522^m&52

a1b

2
5cotht. ~3.14!

Integrating once and restoringg, we have the final result

ef5
1

sinh~ t2ugu!
, ~3.15!

which coincides with what was found in@1#.

IV. DISORDERED PHASE

In this phase, one usually rewrites the weights

a5sin~g2t !, b5sin~g1t !, c5sin~2g!, ~4.1!

with redefined parameterst and g, utu,g, and the function
f(t)5sin(2g)/@sin(t2g)sin(t1g)#; the partition function is
then given by
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ZN5
@sin~g1t !sin~g2t !#N2

~)n50
N21n! !2 tN , ~4.2!

with tN still given by Eq.~2.3!. The Laplace transform is

f~ t !5
sin~2g!

sin~g1t !sin~g2t !
5E

2`

1`

dletl

sinh
l

2
~p22g!

sinh
l

2
p

.

~4.3!

This time the measure is smooth andtN is a matrix integral
in the usual sense.

We must now rescale the variablesl i . We choose to
definem i5gl i /N. Then

tN5cN8 g2N2E
2`

1`

dm1¯dmND~m i !
2

3)
i 51

N F sinhNm i S p

2g
21D

sinhNm i

p

2g

eN~ t/g!m iG . ~4.4!

One then simplifies the potential by using sinhNm(p/2g
21)/sinhNm(p/2g);e2Numu. Therefore,

tN'cN8 g2N2E
2`

1`

dm1¯dmND~m i !
2eN( i @~ t/g!m i2um i u#.

~4.5!

Note that the matrix integral only depends on the ratioz
[t/g.

The matrix model~4.5! is fairly simple and can be solve
easily in the largeN limit via the saddle point method. On
introduces again the saddle point density of eigenval
r(m)dm, normalized so that*r(m)dm51. The support of
r~m! is assumed to be a single interval@a,b# (a,0,b), due
to the shape of the potential~single well centered around 0!.
The resolvent is defined as before. The saddle point eq
tions read

v~m1 i0!1v~m2 i0!52z1sgn~m!, ;mP@a,b#,
~4.6!

where the right-hand side is simply the derivative of the p
tential. The solution of this equation

v~z!5
12z

2
1

2

ip
logFAb~z2a!2 iA2a~z2b!

Az~b2a!
G

~4.7!

is very similar to the ferroelectric phase; and the rest of
calculation goes along the same lines.

Requiring thatv(z);1/z as z→`, we obtain the two
equations:

12z5
2

ip
log

Ab1 iA2a

Ab2 iA2a
,

s

a-

-

e

A2ab5p, ~4.8!

which we solve fora andb:

a52p tan
p

4
~12z!, b5p tan

p

4
~11z!. ~4.9!

Noting that

] f

]z
5 K 1

N
trM L 5

a1b

4
, ~4.10!

we find

f 52 log cos
p

2
z1const. ~4.11!

We shall not discuss how to fix the constant of integratio
since this will be addressed in the next section in a m
general setting. Reintroducing theg dependence coming
from Eq. ~4.5!, we have the final expression:

ef5
p

2g

1

cos
pt

2g

, ~4.12!

which reproduces the result of@1#.

V. ANTIFERROELECTRIC PHASE

We finally study the most interesting phase, in which t
weights are given by

a5sinh~g2t !, b5sinh~g1t !, c5sinh~2g!,
~5.1!

with utu,g, and the partition function by

ZN5
@sinh~g1t !sinh~g2t !#N2

~)n50
N21n! !2 tN , ~5.2!

with f(t)5sinh(2g)/@sinh(g1t)sinh(g2t)#.

A. Bulk free energy

We have the expansion

f~ t !5
sinh~2g!

sinh~g1t !sinh~g2t !
52 (

l 52`

1`

e2t le22gu l u.

~5.3!

We perform the rescalingm i52g l i /N and find thattN takes
the form

tN5cN8 g2N2

(
m1 ,...,mNP~2g/N!Z

D~m i !
2en( i @~ t/g!m i2um i u#.

~5.4!

The remarkable feature is that Eq.~5.4! is identical to Eq.
~4.5! up to the discrete nature of the variables. We sh
comment on this later.

The situation is a bit more complicated than in the pre
ous cases, since we now expect a saturated region@a8,b8# at
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the bottom of the well (a8,0,b8) and two unsaturated
regions@a,a8# and @b8,b# on each side. This is a two-cu
situation, which is in fact the reason why the naive appro
of @1# fails in the antiferroelectric phase~see Sec. V D for
more on this!. Let us define as beforez5t/g, the density
r~m! and its resolventv~m!. The constraint coming from the
discreteness of them i reads

r~m!<
1

2g
, ;m. ~5.5!

Therefore we have in the saturated region the equation

r~m!5
1

2ip
@v~m2 i0!2v~m1 i0!#5

1

2g
,

;mP@a8,b8#, ~5.6!

whereas in the unsaturated regions, the saddle point e
tions are

v~m1 i0!1v~m2 i0!52z1sgn~m!,

;mP@a,a8#ø@b8,b#, ~5.7!

with z5t/g.
We could proceed as in the previous sections; this wo

lead to a representation ofv(z) in terms of elliptic integrals.
However, this would be fairly cumbersome and we proce
instead as follows. Introduce an elliptic parametrization

u~m!5
1

2
A~b82a!~b2a8!

3E
b

m dz

A~z2a!~z2a8!~z2b8!~z2b!
, ~5.8!

which corresponds to setting:

@~b82a!/~b2a!#@~b2m!/~b82m!#5sn2~u,k!

with k5A(b2a)(b82a8)/(b82a)(b2a8). With an ap-
propriate choice of path of integration, this maps them com-
plex plane~respectively upper half-plane, lower half-plan!
onto the rectangle@0,K#3@2 iK 8,iK 8# ~respectively@0,K#
3@0,iK 8#,@0,K#3@2 iK 8,0#!, whereK andK8 are the usual
complete elliptic integrals of the first kind. Similarly, th
second sheet of the double covering is mapped onto the o
half of the torus, which can be chosen to be@2K,0#3
@2 iK 8,iK 8#. The point of this parametrization is that th
resolventv is now a well-defined function ofu. In fact we
have the following properties.

~i! The functionv(u) can be extended to a homomorph
function in the wholeu plane.

~ii ! The functionv(u) satisfies the following functiona
relations~for all complexu!:

v~u12iK 8!5v~u!2
ip

g
, ~5.9a!

v~u12K !5v~u!22, ~5.9b!
h

a-

ld

d

er

v~u!1v~2u!512z. ~5.9c!

Equation ~5.9a! is the analytic continuation of Eq.~5.6!.
Similarly, by combining the analytic continuations of the tw
equations contained in Eq.~5.7!, one obtains Eqs.~5.9b! and
~5.9c!.

~iii ! The functionv(u) has the following expansion nea
u`5u(z5`):

v52
2

A~b82a!~b2a8!
~u2u`!1O~u2u`!2.

~5.10!

This is a rewriting of the conditionv(z);1/z at infinity.
Using properties~i! and ~ii ! @Eqs. ~5.9a! and ~5.9b!#, we

conclude that (d/du)v(u) is a doubly periodic holomorphic
function, and so is a constant. In order to restore the coe
cients ofv(u) we can use properties~ii ! or ~iii !. We find that

v~u!52
1

K
~u2u`! ~5.11!

plus several conditions relating the different parameters
the problem:

K8

K
5

p

2g
, ~5.12a!

A~b82a!~b2a8!52K, ~5.12b!

u`

K
5

12z

2
. ~5.12c!

Relation~5.12a! is particularly interesting since it shows th
the elliptic nomeq5e2pK8/K5e2p2/2g depends only ong
~and not onz!. Also, the dual nome~under modular transfor-
mation! q̃5e22g is up to a sign the quantum group defo
mation parameter of the model.

We can rewrite the three conditions in terms of the e
points; we find

b2a52K
dnu`

snu`cnu`
,

b2a852K
cnu`

snu`dnu`
, ~5.13!

b2b852K
cnu`dnu`

snu`
.

In order to completely fix the four end pointsa, a8, b8, b,
we need one extra relation; this is the equality of chemi
potentials in the two unsaturated regions. This relation ta
the form

E
a8

b8
@v~m1 i0!1v~m2 i0!#dm5~12z!b81~11z!a8.

~5.14!

Using the expression~5.11! of v(u), we can rewrite it as

b82~b2b8!
snu`

cnu`dnu`
Z~u`!50, ~5.15!
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whereZ is Jacobi’s zeta function; this fixesb8 to be

b852KZ~u`!. ~5.16!

The end points are now determined by Eqs.~5.13! and
~5.16!, supplemented by the value~5.12c! of u` .

At this point, we are ready to calculate the free ener
We first rewrite explicitly the resolvent@Eq. ~5.11!# under
the form

v~z!5E
z

` dz8

A~z82a!~z82a8!~z82b8!~z82b!
.

~5.17!

Next we expand it to order 1/z2 to find

] f

]z
5

a1a81b81b

4
, ~5.18!

which generalizes Eq.~4.10!; using some known identitie
satisfied by zeta and theta functions, we obtain

] f

]z
52

p

2

u28~pz/2!

u2~pz/2!
, ~5.19!

where we recall thatu2(z) is

u2~z!52(
n50

`

q~n11/2!2
cos~2n11!z. ~5.20!

There are a variety of ways to find the integration consta
One is to calculate explicitlyf ~for a particular value ofz,
e.g.,z50! using this matrix model solution, and then resto
the g dependence coming from Eq.~5.4!; this is a straight-
forward but tedious exercise. Another possibility is to use
known limitsz→61, that ist→6g, where we should have
~see@1#!

ef;
1

g7t
. ~5.21!

Either way, we finally find

ef5
p

2g

u18~0!

u2S pt

2g D , ~5.22!

where we recall that the elliptic nome isq5e2p2/2g.
As a simple check of our calculation, note that if o

sendsg to 0 ~keepingz fixed!, since the constraint~5.5!,
which was the only difference with the disordered pha
disappears, one should recover the results of the prev
section. This is indeed what happens when one replaces
theta functions with theirq→0 limit. Also, Eq. ~5.22! has
been numerically checked with high accuracy.

This concludes the calculation of the bulk free energy
the anti-ferroelectric phase. Restated more explicitly, this
the result we have obtained: the partition functionZN of the
six-vertex model on aN3N lattice with DWBC and Boltz-
mann weights given by Eq.~5.1! has the following largeN
behavior:
.

t.

e

,
us
the

is

lim
N→`

ZN
1/N2

5sinhg~12z!sinhg~11z!
p

2g

u18~0!

u2S pz

2 D ,

~5.23!

wherez5t/g, and the elliptic nome of the theta functions
q5e2p2/2g. Note that this expression is different from th
corresponding expression for PBC. Let us now consider
two limits g→0 andg→`. In both cases we shall assum
that z remains fixed.

B. Small g limit

As one sendsg to 0, one reaches the line of th
disordered/antiferroelectric phase transition. As noted ear
the bulk free energy of the disordered phase is essent
obtained from that of the antiferroelectric phase by sett
q50 in the theta functions~and performing the rotationg
→ ig,t→ i t in the prefactors!. Considering thatq5e2p2/2g,
we expect a very smooth phase transition. More explici
we have the following expansion off:

f 5 logF p

2g

1

cosS pt

2g D G12

3 (
m51

`
1

m

q2m

12q2m ~12~21!mcos@mpt/g!#.

~5.24!

After substraction of the analytic continuation of the diso
dered phase free energy~note that this analytic continuatio
is trivial sincef only depends ont/g!, we obtain the singular
part of the free energy, which has a leading singularity

f sing54e2p2/g cos2S pt

2g D1¯ . ~5.25!

This is the same type of singularity that appears in the mo
with periodic boundary conditions@5#. In more physical
terms, if we introduce a temperatureT which is near the
critical temperatureTc , we have

f sing}e2C/ATc2T, ~5.26!

that is an infinite order phase transition.

C. Large g limit

Next, let us consider theg→` limit, i.e., D5
2cosh(2g)→2`. This is a typical zero temperature limi
and we expect that the free energy will be dominated by
contribution of a ground state. After a modular transform
tion, the bulk free energy reads
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F52 log@sinh~g2t !sinh~g1t !#2 f

52
g

2
2

t2

2g
2 log sinh~g1t !1t

12 (
m51

`
1

m

e22mg

sinh~2mg!
sinh2@m~g2t !#. ~5.27!

We can interpret the first terms wheng→`

F52
3

2
g2

t2

2g
1O~e22g! ~5.28!

as coming from the family of ground states described by F
3. The pattern of a rectangle inscribed inside a squar
reminiscent of the circle inscribed inside a square charac
istic of the disordered phase@2#.

D. Subdominant corrections

As a final note, it is interesting to understand why t
approach of@1# fails in the antiferroelectric phase. There, t
idea was to find an appropriate ansatz on the asymp
behavior of the determinanttN and plug it in the Toda equa
tion ~2.5!. The simplest assumption is that only the leadi
behavior ~bulk free energy! must be taken into accoun
which leads to replacingtN with cNeN2f , where cN

5()n50
N21n!) 2. The Toda equation then reduces to the or

nary differential equation forf:

f 95e2 f . ~5.29!

We can now use some insight from matrix models to u
derstand whether this assumption was justified or not. In

FIG. 3. Ground states of the antiferroelectric phase. In regiona
andb the arrows are aligned, whereas in regionc they alternate in
direction.
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ferroelectric and disordered phases, we reduced the com
tation oftN to a matrix model with eigenvalues inone single
interval @a,b# ~disregarding the saturated region which pla
no role here!; it is known that such models have a regul
largeN limit. In fact, in the ferroelectric phase one can eas
prove that

tN;cNeN2feN~ t2ugu! ~5.30!

up to only exponentially small corrections; whereas in t
disordered phase, one expects an asymptotic expan
which starts with

tN;cNeN2fNkC ~5.31!

and continues with inverse powers ofN ~note that this is not
quite the usual topological expansion of 2D gravity since
potential is not polynomial!. In either case, the assumptio
on the corrections is valid, and indeed, one can check tha
expressions~3.15! and ~4.12! do satisfy the ODE~5.29!.

On the contrary, in the antiferroelectric regime, we ha
found that the support of the eigenvalues containstwo inter-
vals @a,a8# and @b8,b# and therefore we expect to be in
situation similar to what was studied in@19,20#. The analysis
shows thattN should in this case display a pseudoperiod
behavior, which is indeed what is found in numerical co
putations. More precisely, after some calculations along
lines of @20#, one finds that

tN;cNF p

2g

u18~0!

u2S pz

2 D G
N2

u4S p

2
~11z!NDC, ~5.32!

wherez5t/g and the elliptic nomeq of the theta function is
as beforeq5e2p2/2g. The constantC depends only ong.
One can check that the right-hand side of Eq.~5.32! does
satisfy the Toda equation~2.5!, even though the bulk free
energy alone does not satisfy the ODE~5.29!.
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@18# E. Brézin and V. Kazakov, e-print math-ph/9909009.
@19# P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venak

ides, and X. Zhou, Commun. Pure Appl. Math.52, 1491
~1999!.

@20# G. Bonnet, F. David, and B. Eynard, e-prin
cond-mat/0003324.


